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Objective of this research

Motivation:
@ Clinical trials collect lots of lab test data, however, they are rarely
analyzed in full extend.
@ Many institutions (e.g., NIH) had published various laboratory
test guide regarding to various diseases.

Objective:
@ To propose a joint modeling of efficacy endpoint and multiple
longitudinal processes to estimate treatment effect.

Data source:
@ Clinical trial data of sample size about 650 for multiple myeloma.

o Efficacy data: time to disease progression (PFS).

@ Various lab test longitudinal data series.
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Longitudinal lab test values
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Longitudinal lab test values
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Serum Protein Change vs Time (Ctrl)
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Change of Serum Protein Level vs. Time (Control)
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Serum Protein Change vs Time (Rx)

Change of Serum Protein Level vs. Time (Treated)
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Change of Serum Protein Level vs. Time

Serum Protein Change vs Time (Ctrl & RXx)
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Rationale for Joint Modeling - 1

@ Cancer studies very often collect time-to-event data and various
repeated measurements of longitudinal data for each subject
simultaneously.

@ The longitudinal data, such as lab tests, genetic biomarker, or a
health outcome, can be important predictors or surrogates of an
event of interest, such as progression-free survival, relapse-free
survival, or overall survival.

@ Joint models for longitudinal data and time-to-event data are
commonly used that bring these two data types together
(simultaneously) into a single model so that one can infer the
association between them, and to better assess the effect of a
treatment.

Kao-Tai Tsai (JPHCOPH & Celgene) - . S0 October 24,2016 11 /40



Rationale for Joint Modeling - 2

@ Joint models are increasingly used in clinical trial data analysis
because they

e provide more efficient estimate of the treatment effects on the
event of interest,

o provide more efficient estimate of the treatment effects on the
longitudinal data series,

e provide more detailed relationship on how hazard of events are
affected by longitudinal process in dimension of time,

e can potentially reduce the bias in the estimates of the overall
treatment effect (however, which is not always equivalent to a
more favorable result).
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Rationale for Joint Modeling - 3

Observed
longitudinal
outcomes

+ possible
measurement errors

To model this association

True (expected)
longitudinal
outcomes

Time-to-Event
Outcomes

s

Treatment &
covariates
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Notations and Models - 1

For subject i, (i =1,...,N),

@ For the time-to-event process, let

e 1" denote the true event time,

o (), be the censoring time,

o the distributions of T7* and C; are independent,
o the observed T; = min(T}, C;),

o 0; = I(TF < C;) be the event indicator,

e with hazard function A;(%).

@ For the longitudinal process, let y;;(t) denote the value of the
longitudinal outcome at time point ¢;; with 5 =1,---  n;.




Notations and Models - 2

The basic idea of joint model assumes

@ a longitudinal process
yi (1) = F1i(t) + Ru1i(t) + €(1), (1)

where F1;(t) is a fixed effect, R1;(t) is an unobserved random
effect, and ¢;(t) is random measurement error.

@ an event process, such as survival, with hazard function
Ai(t) = Ao(t) exp{F2i(t) + Rai(t) (2)

where Fo;(t) is a fixed effect, Ro;(t) is an unobserved random
effect.

@ the random effects (R1;, Ro;) ~ N(0,%).
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Notations and Models - 3
® Specifically, foreach t € {t;; | j=1,--- ,n;},

yi(t) = Fri(t) + Ra(t) + (1)
= 7;()B + Z()bi + €i(t), (3)

where

o z;(t) is the design matrix for the fixed effect,

e (3 is the vector of the unknown fixed effect parameters,

o 2;(t) is the design matrix for the random effect, and

o b, ~ N(0,X) is a vector of random effect parameters,

o ¢;(t) ~ N(0,0?) is the measurement error independent of b;.

Kao-Tai Tsai (JPHCOPH & Celgene)




Model 1: Therneau and Grambsch - 1

@ To quantify the effect of F1;(t) + R1;(t) on the risk of an event,
a common option is to use a relative risk model of the form
(Therneau and Grambsch 2000):

hi(tlMi(t),wi) = lim Pr{t < T7 < t-+dt | T} > t, My(t), w;}/dt

= ho(t) exp{y! w; + a(Fi;(t) + Rii(t))} (4)

where

o M;(t) ={F1i(u) + R1:;(u),0 < wu < t} denotes the history of the
true unobserved longitudinal process up to time t.

e ho(t) denotes the baseline risk function at time ¢, and

o w; = Fy;(t) is a vector of baseline covariates with a corresponding
vector of regression coefficients - .

e parameter « quantifies the effect of the underlying longitudinal
outcome to the risk of an event.

~ October24,2016 17 /40
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Model 1: Therneau and Grambsch -

Remark:

@ The baseline hazard function h(-) can be estimate at each time
point ¢, namely h(?).

@ One can also estimate h(-) based on the cumulative information
of hazard up to time t, namely h(C;(t)), where

Ci(t) = /0 exp{yTw; + a(Fuils) + Rai(s)) ds.
Hence,

hi(E| M (t), ws) = ho(Ci(t)) exp{y" w; + a(F1;(t) + R1:())} (5)

@ If prior knowledge about A(-) is available, extra specification of h
can increase the efficiency of estimation.
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Model 2: Wulfsohn & Tsiatis and Henderson, et al. - 1

Waulfsohn & Tsiatis (1997) used the 2-stage method proposed by
Laird & Ware (1982), and Henderson, et al. (2000) extended

Waulfsohn & Tsiatis' approach and proposed the following approach.

With the latent bivariate Gaussian process R;(t) = (R1;(t), R2i(t)),
such that

@ the longitudinal process
Yij = z1:(t) B1 + Ruiltij) + ey (6)

with
Rii(t) = Vii(t) + dys () Vay ()

and
Vii~ N(0,Z,1), Va; ~ N(0,X2).

Kao-Tai Tsai (JPHCOPH & Celgene)




Model 2: Wulfsohn & Tsiatis and Henderson, et al. - 2
@ the event process
i(t) = H;(t)og exp{mo;(t) Bs + Ro;(t)}. (7)
@ In Henderson et al., they assume
Vii(t) = Uy, Vou(t) = Us, di(t) = 1t,

and
Rgi(t) = v1U1 + y2Us + ’Y3(U1 + Ugt) + Us

with U3 being another error term.

Kao-Tai Tsai (JPHCOPH & Celgene)
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Model 2: Wulfsohn & Tsiatis and Henderson, et al. - 3

Remarks:

@ One of the differences between these two approaches is the latter
approach allows extra random effects in the time-to-event
process in addition to that from the longitudinal process to
increase the flexibility of individual effect.

@ The formal approach uses the MLE and the latter approach uses
EM algorithm to estimate the parameters.

@ Both methods only analyzed one longitudinal process.

Kao-Tai Tsai (JPHCOPH & Celgene)




Parameter estimation - 1

The joint likelihood function contribution from the ¢-th subject can be
formulated as

L= /p(TL-;MRz-;Ht,B) x| [ pyi(tij)IRi. 0y) x p(Ri, 0%)dR:, (8)
j

namely,

L = P(event process)
x P(longitudinal process)

x P(latent random processes)

Kao-Tai Tsai (JPHCOPH & Celgene)




Parameter estimation - 2

Question: How to incorporate more than one longitudinal process
into the model?

It is not as easy to simply extend Eq (8) to
L= /p(ﬂ§5i‘7zi§0taﬂ) x | [ p(yi(ti;)|Ri, 6y)
J

X Hp(zi(tij)lRia 0.)

X p(Ri, QR)dRZ'? (9)

Proposal: estimate the association of each longitudinal process with
event process one-by-one using Eq (8) and combine them to obtain
the joint effect.

Kao-Tai Tsai (JPHCOPH & Celgene)
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Modeling Multivariate Longitudinal Data - 1

The general linear mixed model for repeated measures can be written

as
Y=XB+Zu+e (10)

where u ~ N(0,G), e ~ N(0,R), and Cov(u,e) = 0.

@ Eq (10) includes parameters in the fixed effects vector B and all
unknowns in the covariance matrices G' and R.

@ The number of parameters to be estimated increases almost
exponentially when the number of sequences and the number of
repeats increased that can cause substantial computational

challenges in convergence.

~ October 24,2016 24 /40
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Modeling Multivariate Longitudinal Data - 2

The GLMM can be expressed as:

- g ) o

with
S = Z, E(uly) =2’y y— XB)/o>.  (12)

By plugging the values of the estimated parameters, the random
effects can be predicted as

i =pZ'Sy" (y — XB)/6° with Ty, =1he — Yo 2'Sy" Zopp/o>.
(13)
The fitted values can be predicted as

j=XB+ Za. (14)

Kao-Tai Tsai (JPHCOPH & Celgene)




Modeling Multivariate Longitudinal Data - 3

Remark:
A few potential computational difficulties:

@ The number of parameters need to be estimated can increase
exponentially with increase of the number of series, the number
of measures, and the complexities of the covariance matrix.

@ With the data from these two studies, NV ~ 650 and two data
series, SAS could converge sometimes with only a few repeated
measures (e.g., 2 or 3) and simple covariance matrix (e.g.,
compound symmetry). R also suffers the same challenges.
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Modeling Multivariate Longitudinal Data - 4

Remark 2:
Some approaches in modeling multiple longitudinal sequences:

@ Assume one sequence is the response and other sequences as
covariates. (Note: this can run into time-dependent issues.
Transitional Markov model is a better alternative.)

@ Sum up the values of various sequences and treat it as one
sequence. (Note: highly problematic.)

@ LetY = (11,Ys,---,Y,) be r different longitudinal repeated
series, T" and b be the event times and random effects one can
assume conditional independence of different series and time
given random effects:

f0,Ya, -, Y, Tlb) = ([T £(Yil0)) - £(T1B).
=1

© October 24,2016 2740
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PES Curve by Treatment

Kaplan-Meier Curve of PFS by Treatment
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Longitudinal and Event Processes (Serum)

Joint Model Summary:

Longitudinal Process: Linear mixed-effects model
Event Process: Relative risk model with piecewise-constant
baseline risk function

Longitudinal Process

Value Std.Err =z-value p-value
(Intercept) -10.0584 0.3024 -33.2590 <0.0001
day 0.0038 0.0031 1.2074 0.2273
day:trtgrp -0.0346 0.0031 -11.0981 <0.0001

Event Process

Value Std.Err =z-value p-value
trtgrp -0.8966 0.1263 -7.0986 <0.0001
Assoct 0.0236 0.0044 5.3997 <0.0001

Kao-Tai Tsai (JPHCOPH & Celgene)
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Longitudinal and Event Processes (WBC)

Joint Model Summary:

Longitudinal Process: Linear mixed-effects model
Event Process: Relative risk model with piecewise-constant
baseline risk function

Longitudinal Process

Value Std.Err z-value p-value
(Intercept) -0.2173 0.0986 -2.2039 0.0275
day 0.0053 0.0012 4.4575 <0.0001
day:trtgrp -0.0098 0.0012 -8.4021 <0.0001

Event Process

Value Std.Err =z-value p-value
trtgrp -1.2105 0.1336 -9.0624 <0.0001
Assoct -0.0285 0.0233 -1.2227 0.2214

Kao-Tai Tsai (JPHCOPH & Celgene)




Associations of Serum Protein and WBC

Association of WBC
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Combining the Associations - 1

Let A; and A, be the associations of serum protein and WBC,
respectively, from their models, the BLUE of the combined association

can be estimated by:
A= (1-p5)A1+ BA2
with the estimated weight given by

_ 1 —p(o1/02)
1 —2p(o1/02) + (01/02)*

p

Kao-Tai Tsai (JPHCOPH & Celgene)




Combining the Associations - 2

Based on bootstrap sampling estimates:

Covariance matrix of associations from serum and WBC:
[,1] [,2]

[1,] 3.436944e-05 -5.768486e-06

[2,] -5.768486e-06 6.990862e-04

Correlation matrix of associations from serum and WBC:
[,1] [,2]

[1,] 1.00000000 -0.03721433

[2,] -0.03721433 1.00000000

The estimated weight for WBC:
[1] 0.05387694

Kao-Tai Tsai (JPHCOPH & Celgene)



Weighted Associations

Distr of Weighted Assoc of Serum Protein and WBC
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Combined Effect of Serum Protein and WBC on Hazard

Combined Effect of Serum level and WBC on Hazard Combined Efiect of Serum level and WBC on Hazard

Hazard = exp(0.946*serumchg*0.0236+0.054*wbcchg*-0.0285) Cyan plate: exp(0.946*serumchg*0.0236+0.054*wbcchg*-0.0285)=1
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Comparison of Estimation Methods

Comparison of Estimation Methods

Comparison of Estimation Methods
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Estimate Hazard Function of PFS

@ Hazard estimators can then be obtained by smoothing the
iIncrements of the Nelson-Aalen estimator

25 @<t/ (n—i+1). (15)
of the cumulative hazard function A(t), where dj; is the

censoring indicator of 1.

@ Using the kernel method, one can estimate the kernel hazard rate
function by

= > {0/(n—i+ D}1/R)K((t—Tg)/h).  (16)
1=1
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*‘“r
s



Hazard Function Estimate

Overall Hazard Rate of Disease Progression Vs Sﬂ.IdY Days Hazard Rate of Disease Progression vs Study Days
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Summary

@ Clinical trials collect huge amount of data and lots of them were
left unanalyzed.

@ To better understand the overall treatment effects, one needs to
analyze efficacy and safety data, pre and post-treatment data
together, as they quite often interact with each other.

e Joint model of various data types collected in clinical studies has
been well-established in both theory and practices. We propose a
general approach to combine the effect of multiple longitudinal
processes on the estimation of treatment effect.
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